GRAFILIT®			SF	SL	SP	EM	DONIFLEX®			G-LD		G-	_
Composition			Expanded natural graphite.	Expanded natural graphite, stainless steel foil insert [AISI 316; 0.05 mm].	Expanded natural graphite, tanged stainless steel sheet insert	Expanded natural graphite, expanded stainless steel sheet insert	1	Composition		Aramid fibres, natural gra inorganic fillers, NBR bind		Aramid fibres, n inorganic fillers	
				(Al31310, 0.03 IIIIII).	(AISI 316; 0.1 mm).	(AISI 316L; 0.15 mm).		Colour		Grey		Grey	
1	Colour		Black	Black	Black	Black				Material has very good ch thermal resistance. Mater		Material has ver	, ,
n) 000 (SF)	-		This material has excellent chemical and thermal resistance,	Material designed for high operating pressures with excellent	Material designed for high operating and surface pressures. It has	Material with excellent media resistance and blowout safety, even	Size (mm) 1500 x 1480 2000 x 1480	Properties		compressibility enables ve adaptability to uneven flar	ery good	thermal and me It has very good	
000 1500 x 1500 EM)	Properties	Properties thermat resistance, combined with high compressibility.		chemical and thermal resistance.	excellent chemical and thermal resistance with blowout safety.	in applications with cycling loads, makes this material superior.	(G-LD, G-MD) 1500 x 1480 (G-EM) Thickness (mm)	Appropriate industries		General purpose, chemical petrochemical industry, pa cellulose industries, autor engine building industry, h	aper and motive and	Petrochemical i cellulose indust engine building heating system,	tries j ind
Thickness (mm) 0.5 1.0 1.5 2.0 3.0			Water supply, chemical industry, petrochemical	Water supply, steam supply, chemical	General purpose, steam supply, gas supply,	Steam supply, gas supply, chemical	0.5 1.0 1.5 2.0 3.0 (G-LD, G-MD)			applications.		applications. Please inquire.	
	Appropriate industries industry, refrige		industry, refrigeration and cooling, high temp. applications.	industry, power plant, heating sistem, high temp. applications.	chemical industry, heating systems, high temp. applications.	industry, petrochemical industry, heating systems, high temp. applications.	1.0 1.5 2.0 3.0 4.0 (G-EM)	Approvals		TA-Luft (VDI 2440)		riease inquire.	
						аррисация.	TECHNICAL DATA Typical values for a	thickness of:		2 mm			1 m
			DIN-DVGW DIN 3535-6,	BAM (Oxygen)	DIN-DVGW DIN 3535-6,	DIN-DVGW DIN 3535-6,	Density	DIN 28090-2		1.2			1.4
	Approvals		DVGW VP 401, BAM (Oxygen),		DVGW VP 401 (5 bar), API 607, BAM (0xygen),	TA-Luft (VDI 2440), ISO 10497	Compressibility Recovery	ASTM F36J ASTM F36J	%	35 17			32
			Germanischer Lloyd		Germanischer Lloyd	150 10477	Tensile strength	ASTM F363	MPa	4.5			9
			,		,		Stress resistance	DIN 52913					
NICAL DATA Typical valu	es for a thickne	ss of 1.5 i	mm				50 MPa, 16 h, 175 °C		MPa	40			45
y	DIN 28090-2		1.0	1.3	1.5	1.4	50 MPa, 16 h, 300 °C Specific leak rate	DIN 3535-6	MPa mg/(s·m)	35 0.5			40 0.5
		-					Thickness increase	ASTM F146	1119/(5111)	0.0			0.0
ressibility	ASTM F36A	%	45	42	35	35	Oil IRM 903, 5 h, 150 °C		%	3			5
ery · .	ASTM F36A	%	13	15	17	20	ASTM Fuel B, 5 h, 23 °C	107115477	%	2			5
resistance	DIN 52913						Weight increase Oil IRM 903, 5 h, 150 °C	ASTM F146	%	30			20
60 MPa, 300 °C		MPa	49	49	49	49	ASTM Fuel B, 5 h, 23 °C		%	25			17
ic leak rate	DIN 3535-6	mg/(s·m)	0.05	0.05	0.05	0.05	Compression modulus	DIN 28090-2					
able chloride content	FSA NMG 202	ppm	20	20	20	20	At room temperature: ε _{KSW}		%	26			17
able fluoride content	FSA NMG 203	ppm	20	20	20	20	At elevated temperature: ε _{WSW/200°C} Percentage creep relaxation	DIN 28090-2	%	5			5
ntent of graphite	DIN 51903	%	<1	<1	<1	<1	At room temperature: ϵ_{KRW}	DII V 20070 Z	%	3.0			2.6
ession modulus	DIN 28090-2						At elevated temperature: $\epsilon_{\text{WRW/200 °C}}$		%	0.5			0.2
n temperature: ε _{KSW}		%	41	38	34	32	Creep deformation Change in thickness at 20 °C, 50 MPa		%	33			18
ated temperature: ε _{wsw/300}	°C	%	0.9	1.2	1.2	2.5	Change in thickness at 20 °C, 50 MPa		%	8			10
tage creep relaxation	DIN 28090-2						Change in thickness at 400 °C, 50 MPa		%	17			15
n temperature: ε _{κρω}		%	5.0	4.3	4.2	4.5							
ated temperature: ε _{WRW/300} °		%	4.0	3.6	3.3	3.5							
ing conditions													
ım temperature		°C/°F	-200/-328	-200/-328	-200/-328	-200/-328	DONIEL ON®)		000Γ	γ	110	
Jous temperature		5/ 1	200/ 020	2001 020	2007 020	200/ 020	DONIFLON®			900E	Zί	010	
ing atmosphere		°C/°F	550/1022	550/1022	550/1022	550/1022				1 0 000		0 10	
		°C/°F	700/1292	700/1292	700/1292	700/1292	Size (mm)			Stranger		Contra and	
ing or inert atmosphere		U/ F	700/1292	700/1272	700/1272	700/1272	1500 x 1500			and a series		1	
re							Thickness (mm)					\ /	1
anding gasses		bar/psi	30/435	60/870	60/870	80/1160	0.5 1.0 1.5 2.0 3.0 4.0					1	
m, gasses		bar/psi	60/870	100/1450	130/1885	150/2175	5.0 6.0 (900E)	position	PT	FF	PTFE, hollow		P
ds		bar/psi	100/1450	140/2030	160/2320	180/2610	1.5 2.0 3.0	Position	1.1		microbeads.		45
							[2010, 2020, 2030] Color		Wh		Blue		Pir

- oxidizing atmosphere	°C/°F	5!	50/1022	550/1022		550/1022	550/1022			
- reducing or inert atmosphere	°C/°F	70	00/1292	700/1292		700/1292	700/1292			
Pressure										
- demanding gasses	bar/psi	3	30/435	60/870		60/870	80/1160			
- steam, gasses	bar/psi	6	50/870	100/1450		130/1885	150/2175			
- liquids	bar/psi	10	00/1450	140/2030		160/2320	180/2610			
MICALIT®				F			P			
1000	Composition		Mica flakes (p	phlogopite), silicon resin.	Mica flakes (phlogopite), silicon resin, tanged stainless steel sheet insert (AISI 316; 0.1 m					
The state of the s	Colour		Yellowish-bro	wn to green	Yellowish-brown to green Material has excellent thermal resistance, good chemical and mechanical resistance. It has good electrical insulation and low thermal conductivity properties. Chemical industry, petrochemical industry, automotive and engine building industry, heating systems, high temp. applications.					
-	Properties		resistance. It	excellent thermal and che has good electrical insula nal conductivity properties						
Size (mm) 1000 x 1200 Thickness (mm)	Appropriate ind	ustries	automotive a	ustry, petrochemical indus nd engine building industr ms, high temp. application						
0.4 - 3.0 (F) 1.5 2.0 3.0 (P)										
TECHNICAL DATA Typical values										
Density	DIN 28090-2	g/cm ³		1.9		2.0				
Compressibility	ASTM F36J	%		20		20				
Recovery	ASTM F36J	%		35			35			
Loss on ignition	DIN 52811	%		<8			<5			
Stress resistance	DIN 52913									
50 MPa, 16 h, 300 °C		MPa		38			42			
May anarating townsproture		°C/°E		050/17/0			050/17/0			

	Compo	osition						expanded galvanized steel sheet insert (0.4 mm).				
and the same of th	Colour			Grey		Grey		Grey				
(mm) 0 x 1480 2000 x 1480	Proper	rties		Material has very good ch thermal resistance. Mater compressibility enables ve adaptability to uneven flar	rial's high ery good	thermal and me	y good chemical, chanical properties. resistance to steam.	This material is distinguished by enhanced thermomechanical resistance in particular to surface pressure and blowouts in combinatia with enhanced sealing characteristic				
D, G-MD) 1 x 1480 [G-EM] kness (mm) 1.0 1.5 2.0 3.0	Approp industi			General purpose, chemica petrochemical industry, pi cellulose industries, autor engine building industry, h applications.	aper and motive and	cellulose indust	ndustry, paper and ries, automotive and industry, shipbuilding, high temp.	automo industr	supply, petrochemical industry, tive and engine building y, power plant, heating s, high temp.applications.			
D, G-MD) 1.5 2.0 3.0 4.0 (G-EM)	Approv	/als		TA-Luft (VDI 2440)		Please inquire.		Please	inquire.			
,,,,,												
CHNICAL DATA Typical value				2 mm			1 mm		2 mm			
sity	DIN 280		cm ³	1.2			1.4		1.7			
npressibility overy	ASTM I		%	35 17			32		20 30			
sile strength	ASTM		70 1Pa	4.5			9		15			
ss resistance	DIN 52											
1Pa, 16 h, 175 °C		1	1Pa	40			45		40			
1Pa, 16 h, 300 °C		MPa		35			40		35			
cific leak rate	DIN 35]/(s·m)	0.5			0.5		0.1			
RM 903, 5 h, 150 °C	ASTM	F140	%	3			5		8			
M Fuel B, 5 h, 23 °C		%		2			5		<u> </u>			
ght increase	ASTM	F146										
RM 903, 5 h, 150 °C			%	30			20		18			
M Fuel B, 5 h, 23 °C		%		25			17		18			
npression modulus	DIN 280	090-2										
oom temperature: ε _{KSW}			%	26			17		7			
levated temperature: ε _{WSW/200} «		200.2	%	5			5		7			
centage creep relaxation from temperature: ε _{KRW}	DIN 280	J9U-Z	%	3.0		2.6			3.5			
levated temperature: ε _{WRW/200} :	10	_	%	0.5			0.2		0.7			
ep deformation			,,,	0.0			0.2		5.7			
nge in thickness at 20 °C, 50 M	1Pa		%	33			18		18			
nge in thickness at 300 °C, 50	MPa		%	8			10		8			
ONIFLOI	V ®			900E	20	010	2020		2030			
x 1500 kness (mm)				San San a			0000	/				
1.0 1.5 2.0 3.0 4.0 6.0 (900E)	Composition			FE.	PTFE, hollow	v glass PTFE, silica.			PTFE, barium sulfate.			
2.0 3.0					microbeads.							
0, 2020, 2030)	Colour			nite	Blue		Pink		White			
	Properties		sui No alk cor cor goo ser cer	panded PTFE material itable for nearly all media. it suitable for molten kali metals and fluorine mpounds. Its excellent mpressibility enables very od adaptability to pressure nositive connections like ramic-, plastic-, glassed piping.	Material suitable for nearly all media. Not suitable for molten alkali metals and fluorine compounds. Its high compressibility enables very good adaptability to pressure sensitive connections like ceramic, plastic or glass flanges.		Material suitable for nearly all media, espe- recommended for concentrated inorgani Not suitable for molte alkali metals and fluor compounds.	c acids. n	Material suitable for nearly all media especially recommended for strong alkalis. Not suitable for molten alkali metals and fluorine compounds.			
	Appropriate inc	dustries	ind ind ind	eam supply, chemical dustry, petrochemical dustry, pharmaceutical dustry, food industry, ating systems.	petrochemic pharmaceuti	themical industry, al industry, cal industry, food igeration and	General purpose, pota water supply, chemica industry, petrochemica industry, pharmaceuti industry, food industry	l al cal	Potable water supply, steam supply, gas supply, chemical industry, petrochemical industry, pharmaceutical industry.			
	Approvals		Ple	ease inquire.	Please inqui	re.	Please inquire.		Please inquire.			
CHNICAL DATA Typical valu	es for a thicknes	ss of 2 mi	n									
nsity	DIN 28090-2	g/cm ³		0.8		1.5	2.1		3.0			
mpressibility	ASTM F36J	%		55		35	7		6			
covery	ASTM F36J	%	Į.	12		40	45		40			
nsile strength	ASTM F152	MPa		32		14	14		10			
ess resistance	DIN 52913	MPa		16		14	13		13			
MPa, 16 h, 150 °C ecific leak rate	DIN 3535-6	mg/(s·m		0.002		0.002	0.002		0.002			
range	D11 (0000 - 0	1119/13/11		0-14		0-14	0.002		0.002			
erating conditions												
nimum temperature		°C/°F		-200/-328		00/-328	-200/-328		-200/-328			
ximum temperature		°C/°F		260/500	26	50/500	260/500		260/500			

G-EM

Aramid fibres, natural graphite, inorganic fillers, NBR binder,

TESNIT®

DONIFLON®

MICALIT®

Slovenia DONIT TESNIT, D.O.O.

Cesta komandanta Staneta 38, 1215 Medvode, Slovenia Phone: +386 (0)1 582 33 00 E-mail: info@donit.eu

China **SUZHOU DONIT SEALING MATERIALS**

Import and Export Co., Ltd. No. 8 Suzhou Avenue West, Bank of China Building, Room 1904, SIP, 215021, P.R. China Phone: +86 (0)512 659 535 29 E-mail: sales.suzhou@donit.eu

India

DONIT TESNIT INDIA

C-406, Mantri Lavendula Mulshi

Bavdan Khurd, Pune - 411 021, India Bannerlaan 50, Phone: +91 20 6520 7558 E-mail: sales.india@donit.eu

Middle East

DONIT TESNIT MIDDLE EAST E-mail: sales.middleeast@donit.eu

Latin America **DONIT TESNIT LATIN AMERICA**

E-mail: sales.latinamerica@donit.eu

North America **DONIT TESNIT NORTH AMERICA** LLC

Donit Tesnit North America, LLC 5110 Fulton Industrial Blvd, Suite E Atlanta, Georgia 30336 Mobile: +1 678-360-8562 Phone: +1 404-696-3998 Fax: +1 877-624-2766

Slovenia DONIT TESNIT, D.O.O.

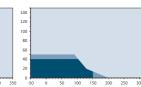
Donit Industrial Sealing Solutions Paradiž 4, 8210 Trebnje, Slovenia Phone: +386 (0)8 205 50 44 E-mail: salesgaskets@donit.eu

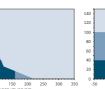
E-mail: donit@donit.us

Belgium DISS-EUROPE BVBA

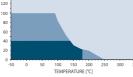
Donit Industrial Sealing Solutions 2280 Grobbendonk, Belgium Phone: +32 (0)14 302 100 E-mail: sales@disseurope.be

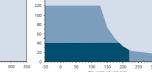
QUALITY AND EXPERIENCE YOU CAN

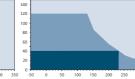

For disclaimer please visit http://donit.eu/disclaimer Copyright © DONIT TESNIT, d.o.o. All rights reserved Date of issue: 05.2018 / PB-GS-05-2018

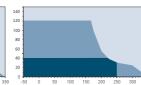

www.donit.eu

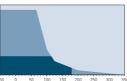
BASIC SHEET FEAT	URES	TE	SNIT®	BA-202	BA-203	BA-50	BA-55	BA-U	BA-CF	BA-M	BA-GL	BA-R	BA-REM	BA-R300	BA-R302
Size (mm)	1500 x 1500 3000 x 1500 4500 x 1 (BA-202, BA-203, BA-50, BA-55, BA-60, BA-61, BA-61)			Salatan a	Office of the second	Salar S	199	Solding.		To the same of the	Sales -	120	September 1	(3) I	(32)
	1500 x 1500 (BA-R, BA-REM) 1500 x 1400 Rolls (BA-R300)			1,500									Ser.		
	500 x 1400 (BA-R302) Other sizes available on request.		Composition	Cellulose fibres, inorganic fillers, NBR binder. Optional steel wire mesh insert on request.	Aramid fibres, inorganic fillers, NBR binder. Optional steel wire mesh insert on request.	Aramid fibres, inorganic fillers, NBR binder. Optional steel wire mesh insert on request.	Engineered bio-soluble mineral fibres, aramid fibres, inorganic fillers, NBR binder. Optional steel	Aramid fibres, inorganic fillers, NBR binder. Optional steel wire mesh or expanded steel insert on	Carbon fibres, inorganic fillers, NBR binder. Optional steel wire mesh or expanded steel insert on	Engineered bio-soluble mineral fibres, aramid fibres, inorganic fillers, NBR binder. Optional steel	Glass fibres, aramid fibres, inorganic fillers, NBR binder. Optional steel wire mesh or	Aramid fibres, inorganic fillers, NBR binder, carbon steel wire mesh insert.	Glass fibres, aramid fibres, inorganic fillers, NBR binder, expanded galvanized steel	Engineered bio-soluble mineral fibres, inorganic fillers, NBR binder, tough carbon steel	Tanged carbon steel sheet sandwiched with BA-R300.
Thickness (mm)	0.5 1.0 1.5 2.0 3.0 (BA-202, BA-203, BA-50, BA-55, BABA-CF, BA-M, BA-GL)	ßA-U,	 Colour	Pink / Red	Yellow	Light green	wire mesh insert on request. Dark green	request.	request. Black	wire mesh or expanded steel insert on request. Greenish-blue / Grey	expanded steel insert on request. Greenish-blue / Green	Black	sheet insert. Green	wire mesh insert.	Black
	1.0 1.5 2.0 3.0 (BA-R, BA-REM) 0.7 1.0 1.2 1.4 2.0 2.5 3.0 (B 1.4 1.6 (BA-R302)		Properties	Material has good mechanical and sealing properties. It has been designed for non-demanding applications.	Material with good thermal resistance, designed for less demanding applications.	Material has good thermal, chemical, and dynamic resistance.	Material has good thermal and chemical properties and resistance to steam.	Material for general purpose with good mechanical and thermal properties and low gas permeability.	Material has excellent thermal properties and very good chemical resistance to steam and strong alkaline media.	Material possesses excellent thermomechanical properties, especially bolt torque retention.	This material combines excellent thermal, chemical and mechanical properties. It has outstanding bolt torque retention.	This material combines very good resistance to high internal and surface pressure, with good thermal properties. It has high bolt	This material combines excellent resistance to high internal and surface pressure, with good thermal properties.	Material has outstanding dynamic and thermal resistance.	Material has superior thermal resistance coupled with excellent mechanical properties and blowout safety.
Surface finish	Surface finish is 2AS. (BA-202, BA-203) Surface finish is 4AS. (BA-50, BA-55, BA-U, BA-CF, BA-1	M		General purpose, water supply, shipbuilding.	General purpose, water supply, shipbuilding.	General purpose, water supply, potable water supply, gas supply,	General purpose, potable water supply, steam supply, gas supply,	General purpose, gas supply, petrochemical industry, food	Steam supply, gas supply, chemical industry, petrochemical industry,		Steam supply, gas supply, shipbuilding, power plant, heating	Automotive and engine building industry, shipbuilding.	It has outstanding bolt torque retention. Steam supply, petrochemical industry, shipbuilding, power	Steam supply, automotive and engine building industry,	Steam supply, automotive and engine building industry,
	BA-GL, BA-REM) Surface finish is 2G. [BA-R, BA-R300, BA-R302]		Appropriate industries	Please inquire.	Germanischer Lloyd	food industry, automotive and engine building industry. DIN-DVGW DIN 3535-6,	food industry, heating systems. DIN-DVGW DIN 3535-6,	industry, shipbuilding, refrigeration and cooling. DIN-DVGW DIN 3535-6,	paper and cellulose industries, high temp. applications. DIN-DVGW DIN 3535-6,	refrigeration and cooling, heating systems, high temp. applications. BAM (Oxygen), EC 1935/2004,	systems, high temp. applications. DIN-DVGW DIN 3535-6,	BAM (Oxygen),	plant, high temp. applications. Please inquire.	shipbuilding, power plant, high temp. applications. Germanischer Lloyd	shipbuilding, power plant, high temp. applications. Germanischer Lloyd
Tolerances	Optional graphite or PTFE finish or ± 5 % on length and width On thickness up to 1.0 mm ± 0.1 m On thickness above 1.0 mm ± 10 %	nm	Approvals			TA-Luft (VDI 2440), WRAS, Germanischer Lloyd, TZW ELL,	DVGW VP 401, DVGW VP 401 (5 bar), TZW ELL, DVGW W270, BAM (0xygen), EC 1935/2004, BS 7531 Grade X	DVGW W270, TZW ELL, TA-Luft (VDI 2440), BAM (Oxygen),	DVGW VP 401, BAM (0xygen), Germanischer Lloyd, BS 7531 Grade X	BS 7531 Grade X	DVGW VP 401, TZW ELL, BAM (0xygen), TA-Luft (VDI 2440), API 607, Germanischer Lloyd, WRAS, ISO 10497, ABS, EC 1935/2004, BS 7531 Grade X	Germanischer Lloyd			
TECHNICAL DATA T	ypical values for a thickness of 2 mi	ım (BA-REM 1.5 mm	n)												
Density		DIN 28090-2	g/cm³	1.8	1.8	1.8	1.8	1.7	1.7	1.7	1.8	2.0	2.2	3.2	3.7
Compressibility		ASTM F36J	%	9	10	9	7	11	9	10	7	8	7	10	8
Recovery		ASTM F36J	% NB	60	60	55	55	60	60	60	55	55 17	50 35	40	45
Tensile strength Stress resistance		ASTM F152 DIN 52913	MPa	8	8	11	/	10	12	13	11	17	33	/	/
50 MPa, 16 h, 175 °	C	DII	MPa	20	25	25	35	27	35	35	38	30	43	46	48
50 MPa, 16 h, 300 °			MPa	/	/	/	30	23	30	27	33	25	38	40	45
Specific leak rate		DIN 3535-6	mg/(s·m)	0.04	0.08	0.07	0.06	0.02	0.09	0.05	0.03	/	/	/	/
Thickness increase	e	ASTM F146													
Oil IRM 903, 5 h, 15	0 °C		%	10	8	8	8	2	5	5	3	8	5	5	5
ASTM Fuel B, 5 h, 2	23 °C		%	10	10	10	10	5	5	6	5	/	8	/	/
Compression mode	ulus	DIN 28090-2													
At room temperatur			%	/	/	8.5	7.6	9.5	7.3	10.8	6.9	8.5	6.5	11.1	7.1
At elevated tempera		DIN 00000 0	%	/	/	25	11.4	16.1	8.3	11.0	7.9	15.8	5.8	6.9	6.3
Percentage creep r		DIN 28090-2	0/		1	F 1	2.2	/ 7	2./	/ 1	3.3	4.2	3.2	3.4	2.2
At elevated temperatur			90	1	/	5.1	3.2 0.8	4.7 0.8	3.6	4.1 0.8	1.2	0.7	0.5	0.4	0.5
At elevated tempera			70			1.2	0.0	0.0	1.0	0.0	1.6	0.7	0.0	0.7	0.0
Peak temperature	ig conditions		°C/°F	180/356	250/482	280/536	350/662	350/662	400/752	440/824	440/824	400/752	460/860	550/1022	650/1202
Continuous temper	rature		°C/°F	140/284	200/392	220/428	270/518	250/482	300/572	350/662	350/662	350/662	370/698	450/842	600/1112
Continuous temper			°C/°F	120/248	160/320	180/356	230/446	200/392	280/536	300/572	250/482	/	250/482	/	/
Pressure			bar/psi	40/580	50/725	80/1160	100/1450	100/1450	120/1740	120/1740	120/1740	140/2030	150/2175	/	/
	I I 514-1, Type IBC, PN 40, DIN 2809	91-2/38 2 mm		wal .	40	140	100	10		140	140	100		P-T diagrams indicate the ma	ximum allowed combination of

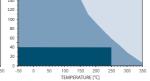

P-T DIAGRAM EN 1514-1, Type IBC, PN 40, DIN 28091-2 / 3.8, 2 mm


- General suitability Under common installation practices and chemical compatibility.
- Conditional suitability Appropriate measures ensure maximum performance for joint design and gasket installation. Technical consultation is recommended.
- Limited suitability Technical consultation is mandatory.









P-I diagrams indicate the maximum allowed combination of internal pressure and service temperature which can be applied simultaneously for a given gasket depending on its material type, thickness, size and tightness class. Given the variety of gasket applications and service conditions, these values should only be regarded as guidance for the proper gasket assembly. In general, thinner gaskets exhibit better P-T properties.

Chemical resistance chart for Tesnit products

The recommendations made here are intended as a guideline for the selection of a suitable gasket. The function and durability of these products depends upon a number of factors.

+ Recommended

? Recommendation depends on operating conditions

- Not recommended

	BA-202	BA-203, BA-50, BA-55, BA-U, BA-M, BA-GL	BA-CF	BA-R, BA-REM, BA-R300, BA-R302		BA-202	BA-203, BA-50, BA-55, BA-U, BA-M, BA-GL	BA-CF	BA-R, BA-REM, BA-R300, BA-R302		BA-202	BA-203, BA-50, BA-55, BA-U, BA-M, BA-GL	BA-CF	BA-R, BA-REM,
Acetamide	+	+	+	+	Diphyl (Dowtherm A)	+	+	+	+	Oxalic acid	?	?	?	-
Acetic acid, 10%	+	+	+	-	Esters	?	?	?	?	Oxygen (gas)	-	?	-	-
Acetic acid, 100% (Glacial)	?	-	?	-	Ethane (gas)	+	+	+	+	Palmitic acid	+	+	+	-
Acetone	?	?	?	?	Ethers	?	?	?	?	Paraffin oil	+	+	+	+
Acetonitrile	+-	<u> </u>	-		Ethyl acetate	?	?	?	?	Pentane	+	+	+	+
Acetylene (gas)	+	+	+	+	Ethyl alcohol (Ethanol)	+	+	+	+	Perchloroethylene	+÷	Ė	Ė	+ :
Acid chlorides	+-	i i	÷	<u> </u>	Ethyl cellulose	?	?	?	?	Petroleum (Crude oil)	+	+	+	+
Acrylic acid	+-	?	?	-	Ethyl chloride (gas)	<u> </u>	Ė	-	H	Phenol (Carbolic acid)	+ -	-	-	+ -
Acrylonitrile	+-	-	-	-	Ethylene (gas)	-			-	Phosphoric acid, 40%	+-	?	?	+-
	+	-	+	 		+	+	+	+		+-		Ė	+-
Adipic acid	+	+	<u> </u>	\vdash	Ethylene glycol	+	2	?	?	Phosphoric acid, 85% Phthalic acid	+		-	╫
Air (gas)	+	+	+	+	Formaldehyde (Formalin)	?	?	?	?		+	+	+	╫
Alcohols	+	+	+	+	Formamide	-	<u> </u>	-	-	Potassium acetate	+	+	+	+
Aldehydes	?	?	?	?	Formic acid, 10%	?	+	+	-	Potassium bicarbonate	+	+	+	+
Alum	+	+	+	?	Formic acid, 85%	-	?	?		Potassium carbonate	+	+	+	+
Aluminium acetate	?	+	+	-	Formic acid, 100%	ļ <u>-</u>	-	_	_	Potassium chloride	+	+	+	+-
Aluminium chlorate	?	?	?	-	Freon-12 [R-12]	+	+	+	+	Potassium cyanide	+	+	+	-
Aluminium chloride	-	?	?	-	Freon-134a (R-134a)	+	+	+	+	Potassium dichromate	-	?	?	-
Aluminium sulfate	-	?	?	-	Freon-22 (R-22)	?	?	?	?	Potassium hydroxide	-	?	?	!
Amines	-	-	-	-	Fruit juices	+	+	+	_	Potassium iodide	+	+	+	↓-
Ammonia (gas)		?	?	?	Fuel oil	+	+	+	+	Potassium nitrate	+	+	+	 -
Ammonium bicarbonate	+	+	+	+	Gasoline	+	+	+	+	Potassium permanganate	-	?	?	↓-
Ammonium chloride	+	+	+		Gelatin	+	+	+	+	Propane (gas)	+	+	+	+
Ammonium hydroxide	?	+	+	+	Glycerine (Glycerol)	+	+	+	+	Propylene (gas)	+	+	+	+
Amyl acetate	?	?	?	?	Glycols	+	+	+	+	Pyridine	-	-	-	_
Anhydrides		?	?	_	Helium (gas)	+	+	+	+	Salicylic acid	?	?	?	_
Aniline		-	_	_	Heptane	+	+	+	+	Seawater/brine	+	+	+	_
Anisole	?	?	?	?	Hydraulic oil (Glycol based)	+	+	+	+	Silicones (oil/grease)	+	+	+	+
Argon (gas)	+	+	+	+	Hydraulic oil (Mineral type)	+	+	+	+	Soaps	+	+	+	+
Asphalt	+	+	+	+	Hydraulic oil (Phosphate ester based)	?	?	?	?	Sodium aluminate	?	+	+	+
Barium chloride	+	+	+	_	Hydrazine	-	-	-	_	Sodium bicarbonate	+	+	+	+
Benzaldehyde	-	_	_	_	Hydrocarbons	+	+	+	+	Sodium bisulfite	?	+	+	-
Benzene	+	+	+	+	Hydrochloric acid, 10%	-	?	?	-	Sodium carbonate	+	+	+	+
Benzoic acid	?	?	?	?	Hydrochloric acid, 37%	-	-	-	-	Sodium chloride	+	+	+	-
Bio-diesel	+	+	+	+	Hydrofluoric acid, 10%	-	-	-	-	Sodium cyanide	+	+	+	-
Bio-ethanol	+	+	+	+	Hydrofluoric acid, 48%	-	-	-	-	Sodium hydroxide	-	?	?	?
Black liquor	?	?	?	-	Hydrogen (gas)	+	+	+	+	Sodium hypochlorite (Bleach)	-	?	?	-
Borax	+	+	+	+	Iron sulfate	+	+	+	-	Sodium silicate (Water glass)	+	+	+	?
Boric acid	+	+	+	-	Isobutane (gas)	+	+	+	+	Sodium sulfate	+	+	+	+
Butadiene (gas)	+	+	+	+	Isooctane	+	+	+	+	Sodium sulfide	-	+	+	_
Butane (gas)	+	+	+	+	Isoprene	+	+	+	+	Starch	+	+	+	+
Butyl alcohol (Butanol)	+	+	+	+	Isopropyl alcohol (Isopropanol)	+	+	+	+	Steam	?	+	+	?
Butyric acid	?	+	+	-	Kerosene	+	+	+	+	Stearic acid	+	+	+	-
Calcium chloride	+	+	+	-	Ketones	?	?	?	?	Styrene	?	?	?	?
Calcium hydroxide	+	+	+	+	Lactic acid	?	?	?	-	Sugars	+	+	+	+
Carbon dioxide (gas)	+	+	+	+	Lead acetate	?	+	+	- -	Sulfur	?	?	?	?
Carbon monoxide (gas)	+	+	+	+	Lead arsenate	+	+	+		Sulfur dioxide (gas)	?	?	?	?
Cellosolve	?	?	?	?	Magnesium sulfate	+	+	+	+	Sulfuric acid, 20%	<u> </u>	-	-	+ -
Chlorine (gas)	+-	<u> </u>	-	-	Maleic acid	?	?	?	-	Sulfuric acid, 98%	-	-	_	+-
Chlorine (in water)	+ -	-	-	-	Malic acid	?	?	?	-	Sulfuryl chloride	-	-	_	+-
Chlorobenzene	?	?	?	?	Methane (gas)	+	+	+	+	Tar	+	+	+	+
Chloroform	+ -	Ė	Ė	-	Methyl alcohol (Methanol)	+	+	+	+	Tartaric acid	?	?	?	+:
Chloroprene	?	?	?	?	Methyl chloride (gas)	?	?	?	?	Tetrahydrofuran (THF)	+-	-	-	+-
Chlorosilanes	+ -	<u> </u>	<u> </u>		Methylene dichloride	?	?	?	?	Titanium tetrachloride	+-	-	_	+_
Chromic acid	+-	-	-	-	Methyl ethyl ketone (MEK)	?	?	?	?	Toluene	+	+	+	+
	?	?	?			?	?	?	?		?	?	?	7
Citric acid	_	_	_	\Box	N-Methyl-pyrrolidone (NMP)	 	_	_	\vdash	2,4-Toluenediisocyanate	+		_	+-
Copper acetate	+	+	+		Milk Mineral oil (ASTM no.1)	+	+	+	+	Transformer oil (Mineral type)	+	+	+	+
Copper sulfate Creosote	?	?	?	?	Motor oil	+	+	+	+	Trichloroethylene	+		-	+
	-	-	-	-		+	+	+	+	Vinegar Vinyl chlorida (gas)	+	+	+	+
Cresols (Cresylic acid)	_	_	-	-	Naphtha Nitric acid, 10%	+	+	+	+	Vinyl chloride (gas)	+=	-	-	+-
Cyclohexane	+	+	+	+	Nitric acid, 10%	-	-		\vdash	Vinylidene chloride	+	_	-	_
Cyclohexanol	+	+	+	+	Nitric acid, 65%	-		-	\vdash	Water	+	+	+	?
Cyclohexanone	?	?	?	?	Nitrobenzene	-	-	-	-	White spirits	+	+	+	+
Decalin	+	+	+	+	Nitrogen (gas)	+	+	+	+	Xylenes	+	+	+	++
Dextrin	+	+	+	+	Nitrous gases (N0x)	?	?	?	-	Xylenol	-	-	-	+-
	?	?	?	?	Octane	+	+	+	+	Zinc sulfate	+	+	+	-
Dibenzyl ether		_	_		00 (F 22.0)									
Dibutyl phthalate	?	?	?	?	Oils (Essential)	+	+	+	+					
		?	?	?	Oils (Essential) Oils (Vegetable) Oleic acid	+	+	+	+					